您好,欢迎来到匠吉游戏。
搜索
您的当前位置:首页JS异步编程之Promise、Generator、async/await

JS异步编程之Promise、Generator、async/await

来源:匠吉游戏


Promise

Promise是ES6推出的一种异步编程的解决方案。其实在ES6之前,很多异步的工具库就已经实现了各种类似的解决方案,而ES6将其写进了语言标准,统一了用法。Promise解决了回调等解决方案嵌套的问题并且使代码更加易读,有种在写同步方法的既视感。

我们先来简单了解下ES6中Promise的用法

var p = new Promise(function async(resolve, reject){ // 这里是你的异步操作
 setTimeout(function(){ if(true){
 resolve(val);
 }else{
 reject(error);
 }
 }, 1000)
})

p.then(function(val){ console.log('resolve');
}, function(){ console.log('reject');
})

首先,ES6规定Promise是个构造函数,其接受一个函数作为参数如上面代码中的async函数,此函数有两个参数,resolve、reject分别对应成功失败两种状态,我们可以选择在不同时候执行resolve或者reject去触发下一个动作,执行then方法里的函数。

我们可以简单对比下回调的写法和promise的写法的不同

对于传统回调写法来说,一般会写成这样

asyncFn1(function () {
 asyncFn2(function() {
 asyncFn3(function() { // xxxxx
 });
 });
});

或者我们将各个回调函数拆出来来写以减少耦合,像是这样:

function asyncFn1(callback) { return function() { console.log('asyncFn1 run');
 setTimeout(function(){
 callback();
 }, 1000);
 }
}function asyncFn2(callback) { return function(){ console.log('asyncFn2 run');
 setTimeout(function(){
 callback();
 }, 1000);
 }
}function normalFn3() { console.log('normalFn3 run');
}

asyncFn1(asyncFn2(normalFn3))()

最后我们看下Promise的写法

function asyncFn1() { 
console.log('asyncFn1 run'); 
return new Promise(function(resolve, reject) {
 setTimeout(function(){
 resolve();
 }, 1000)
 })
}function asyncFn2() { 
console.log('asyncFn2 run'); 
return new Promise(function(resolve, reject) {
 setTimeout(function(){
 resolve();
 }, 1000)
 })
}function normalFn3() { console.log('normalFn3 run');
}

asyncFn1().then(asyncFn2).then(normalFn3);

这样来看无论是第一种还是第二种写法,都会让人感到不是很直观,而Promise的写法更加直观和语义化。

Generator

Generator函数也是ES6提供的一种特殊的函数,其语法行为与传统函数完全不同。

我们先直观看个Generator实际的用法

function* oneGenerator() { 
yield 'Learn'; 
yield 'In'; 
return 'Pro';
}var g = oneGenerator();

g.next(); // {value: "Learn", done: false}g.next(); // {value: "In", done: false}g.next(); // {value: "Pro", done: true}

Generator函数是一种特殊的函数,他有这么几个特点:

  • 声明时需要在function后面加上*,并且配合函数里面yield关键字来使用。

  • 在执行Generator函数的时候,其会返回一个Iterator遍历器对象,通过其next方法,将Generator函数体内的代码以yield为界分步执行

  • 具体来说当执行Generator函数时,函数并不会执行,而是需要调用Iterator遍历器对象的next方法,这时程序才会执行从头或者上一个yield之后到下一个yield或者return或者函数体尾部之间的代码,并且将yield后面的值,包装成json对象返回。就像上面的例子中的{value: xxx, done: xxx}

  • value取的yield或者return后面的值,否则就是undefined,done的值如果碰到return或者执行完成则返回true,否则返回false。

  • 我们知道了简单的Generator函数的用法以后,我们来看下如何使用Generator函数进行异步编程。

    首先我们先来看下使用Generator函数能达到怎样的效果。

    // 使用Generator函数进行异步编程function* oneGenerator() { yield asyncFn1(); yield asyncFn2(); yield normalFn3();
    }// 我们来对比一下PromiseasyncFn1().then(asyncFn2).then(normalFn3);

    我们可以看出使用Generator函数进行异步编程更像是在写同步任务,对比Promise少了很多次then方法的调用。

    好,那么接下来我们就来看下如何实际使用Generator函数进行异步编程。

    这里我要特别说明一下,事实上Generator函数不像Promise一样是专门用来解决异步处理而产生的,人们只是使用其特性来产出了一套异步的解决方案,所以使用Generator并不像使用Promise一样有一种开箱即用的感觉。其更像是在Promise或者回调这类的解决方案之上又封装了一层,让你可以像上面例子里一样去那么写。

    我们还是具体来看下上面的例子,我们知道单写一个Generator是不能运行的对吧,我们需要执行他并且使用next方法来让他分步执行,那么什么时候去调用next呢?答案就是我们需要在异步完成时去调用next。我们来按照这个思路补全上面的例子。

    var g;function asyncFn() {
     setTimeout(function(){
     g.next();
     }, 1000)
    }function normalFn() { console.log('normalFn run');
    }function* oneGenerator() { yield asyncFn(); return normalFn();
    }
    
    g = oneGenerator();
    
    g.next();// 这里在我调用next方法的时候执行了asyncFn函数// 然后我们的希望是在异步完成时自动去再调用g.next()来进行下面的操作,所以我们必须在上面asyncFn函数体内的写上g.next(); 这样才能正常运行。// 但其实这样是比较奇怪的,因为当我定义asyncFn的时候其实是不知道oneGenerator执行后叫什么名儿的,即使我们提前约定叫g,但这样asyncFn就太过于耦合了,不仅写法很奇怪而且耦合太大不利于扩展和重用。反正总而言之这种写法很不好。

    那么怎么解决呢,我们需要自己写个方法,能自动运行Generator函数,这种方法很简单在社区里有很多,最著名的就是大神TJ写的co模块,有兴趣的同学可以看下其源码实现。这里我们简单造个轮子:

    // 如果我们想要去在异步执行完成时自动调用next就需要有一个钩子,回调函数的callback或者Promise的then。function autoGenerator(generator){ var g = generator(); function next(){ var res = g.next(); // {value: xxx, done: xxx}
    
     if (res.done) { return res.value;
     } if(typeof res.value === 'function'){ // 认为是回调
     res.value(next);
     }else if(typeof res.value === 'object' && typeof res.value.then === 'function'){ // 认为是promise
     res.value.then(function(){
     next();
     })
     }else{
     next();
     }
     }
    
     next();
    }// ----function asyncFn1(){ console.log('asyncFn1'); return new Promise(function(resolve){
     setTimeout(function(){
     resolve();
     }, 1000)
     })
    }function asyncFn2() { console.log('asyncFn2'); return function(callback){
     setTimeout(function(){
     callback();
     }, 1000);
     }
    }function normalFn() { console.log('normalFn');
    }function* oneGenerator() { yield asyncFn1(); yield asyncFn2(); yield normalFn();
    }
    
    autoGenerator(oneGenerator);

    这个方法我们简单实现了最核心的部分,有些判断可能并不严谨,但大家理解这个思路就可以了。有了这个方法,我们才可以方便的使用Generator函数进行异步编程。

    Async/Await

    如果你学会了Generator函数,对于Async函数就会很容易上手。你可以简单把Async函数理解成就是Generator函数+执行器。我们就直接上实例好了

    function asyncFn1(){ console.log('asyncFn1'); return new Promise(function(resolve){
     setTimeout(function(){
     resolve('123');
     }, 2000)
     })
    }function asyncFn2() { console.log('asyncFn2'); return new Promise(function(resolve){
     setTimeout(function(){
     resolve('456');
     }, 2000)
     })
    }
    
    async function asyncFn () { var a = await asyncFn1(); var b = await asyncFn2(); console.log(a,b)
    }
    
    asyncFn();// asyncFn1// asyncFn2// 123,456

    当然async里实现的执行器肯定是跟咱们上面简单实现的有所不同,所以在用法上也会有些注意的点

  • 首先async函数的返回值是一个Promise对象,不像是generator函数返回的是Iterator遍历器对象,所以async函数执行后可以继续使用then等方法来继续进行下面的逻辑

  • await后面一般跟Promise对象,async函数执行时,遇到await后,等待后面的Promise对象的状态从pending变成resolve的后,将resolve的参数返回并自动往下执行直到下一个await或者结束

  • await后面也可以跟一个async函数进行嵌套使用。

  • 对于异步来说,还有很多的知识点我们没有讲到,比如异常处理,多异步并行执行等等,这篇和上篇文章主要还是希望大家对异步编程有个直观的了解,清楚各种解决方案之间的区别和优劣。由于篇幅和精力有限,对于其他我们没讲到的知识点,如果大家有兴趣有机会我会再写文章深入讲解的。

    Copyright © 2019- jianjh.net 版权所有

    违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

    本站由北京市万商天勤律师事务所王兴未律师提供法律服务